A COMPREHENSIVE GUIDE TO
JAVASCRIPT ARRAY METHODS

Categorized by purpose for easy understanding.

A
G

Utility & Static Methods A
General-purpose and static methods

called on the Array constructor. y

. . e e
Adding and Removing Elements Iterating and Transforming 3 Searching and Finding
06 r—
- Methods to add or take away items —/ Functional methods to loop through Q Methods to locate specific items or
from the start, end, or middle. arrays and manipulate data. indices within an array.
e g G I & -
4 N
Slicing and Joining 1 \, Ordering 1 - Testing Conditions
@ Methods to combine arrays or cut ']y Methods tochange the /0 Methods that return boolean
them into smaller pieces. Je arrangement of elements.)L true/false based on array contents. J
s

Includes Mutating (modifies original) and Non-Mutating (returns new value) methods.

*

ADDING AND REMOVING ELEMENTS

e push() (Mutating)]

* pop() (Mutating) (4

e unshift() (Mutating) <>
e shift() (Mutating) (&
e splice() (Mutating) g%

Array.prototype.push() (Mutating)

Adds one or more elements to the end of an array and returns the new length of the array.

.

Adds ‘@’ and ‘@’ to

the end of the array. SN 4

Array.prototype.pop() (Mutating)

Removes the last element from an array and returns that element.

T

INPUT ARRAY (arr) v
I Removes the last
['é', ', '@] ~ element (‘@’) from
S e the array.
o000 9 '

const poppedFruit = arr.pop();

.

OUTPUT (Return Value) | OUTPUT (Mutated Array)

Array.prototype.unshift() (Mutating)

Adds one or more elements to the beginning of an array and returns the new length of the array.

~ INPUT ARRAY (arr) T - |
8 | = Adds “@&" and “_)"

['é’, '*" '@®'] to the beginning of
— SSR— the array.

const newLength = arr.unshift('&', '@");

\b OUTPUT (Return Value)

OUTPUT (Mutated Array)

arr
[, @, ', N, @]

Array.prototype.shift() (Mutating)

Removes the first element from an array and returns that element.

< Y

 INPUT ARRAY (arr)
['l " I*l’ l‘l]
00

OUTPUT (Return Value)

Removes the first
element (‘@’) from

the array.

const shiftedFruit = arr.shift(); \

OUTPUT (Mutated Array)

arr
'R, '@']

Array.prototype.splice() (Mutating)

Adds or removes elements from an array. In this example, we remove one element starting at index 1.

'4'

INPUT ARRAY (arr) g
=B o ; Removes one element
[-g’-, -*" -"] (‘ ') starting at index

=4 1 from the array.

ITERATING AND TRANSFORMING

e forEach() (Non- Mutatlng*)'\/

e map() (Non-Mutating)

._)

|

e filter() (Non-Mutating) V

e reduce() (Non-Mutating) =
e reduceRight() (Non-Mutating) <=

e flat() (Non-Mutating)

ol|-0O

e flatMap() (Non-Mutating)

n)

Array.prototype.forEach() (Non-Mutating*)

Executes a provided function once for each array element. This is commonly used for side effects, like logging
to the console, as shown here.

B INPUT ARRAY (arr) | |
- — | Logs each fruit to the console.
'@ '*' '®'] L No new array is created, and
o00 — | |

‘{/,f— arr.forEach(fruit => console.log(fruit));

OUTPUT (Return Value)

OUTPUT (Original Array) | CONSOLE OUTPUT (Side Effect)

undefined

8. » &

Array.prototype.map() (Non-Mutating)

Creates a new array populated with the results of calling a provided function on every element in the calling
array. In this example, we transform each fruit into a different colored circle representing its color.

INPUT ARRAY (arr) Transforms each fruit
: ’ —~— into a colored circle
('@, ', '@'] J\ \l\j based on its color.

const newArr = arr.map(fruit => {

1A

if (fruit === '@"') return ;

else if (fruit === 'A') return '@"';

else{ OUTPUT (New Array)
return '@"'; : |

} newArr

) ['®', '@, '@®']

Array.prototype.filter() (Non-Mutating)

Creates a new array with all elements that pass the test implemented by the provided function.
Here, we filter to keep only the apple.

=

INPUT ARRAY (arr) '
ke pE ol =L Keeps only element%/here the
g : > condition (fruit ==="@') is true.
('@, 'R, '@'] No new array is created, and the _
—_— ——— — — original array is unchanged.
o0 "

Array.prototype.reduce() (Non-Mutating)

Executes a ‘reducer’ function on each element of the array, resulting in a single output value.
In this example, we sum the lengths of the fruit names (‘apple’ is 5, ‘banana’ is 6, ‘orange’ is 6, total is 17).

-

INPUT ARRAY (arr) | s :

lterates and accumulates the

i T = | | ‘ length of each fruit name to a
['®’, * » ' @'] single value (‘apple’ + 'banang
———— ————— +‘orange’ = 5+6+6 = 17).

/ const totallength = arr.reduce((acc, fruit) = acc + fruit.length, 0);

¥

OUTPUT (Single Value) - OUTPUT (Original Array)

Array.prototype.reduceRight() (Non-Mutating)

This method works exactly like reduce(), but it processes the array elements from right-to-left.
The arrow above the input array in the image visually indicates this direction.

 INPUT ARRAY (arr) SR

lterates and accumulates the

F 4_"__ 3 P length of each fruit name from
& * .] right to left (‘orange’ + 'banang’
____-,_, - - +‘apple’ = 6+6+5 = 17).

/ const totallength = arr.reduceRight((acc, fruit) => acc + fruit.length, 0);

Y

OUTPUT (Single Value) @ OUTPUT (Original Array)

Array.prototype.flat() (Non-Mutating)

Creates a new array with all sub-array elements concatenated into it recursively.
Here, anested array ['2"", ['A', '@']] is flattened into a single-level array. .

INPUT ARRAY (arr) | =

Flatten the nested array.

TR The innerarray [' - ', ‘@]
['@®’, [* , ' @']] is concatenated into the ;
e — main array. ‘

/ const flattenedArr = arr.flat(); /

arr

'@, ['2', '@']] 4

Array.prototype.flatMap() (Non-Mutating)

First maps each element using a mapping function, then flattens the result into a new array. In this example, each
fruit is mapped to an array containing itself and a new fruit (1), and the resulting array of arrays is then flattened.

INPUT ARRAY (a") | ; 1.‘Map each fruit:
L — ‘:*' — — — '._. ' = 2 H[“'] _h’ [I‘lv| I%[ll"etc]
e | Y 1ol ' . Flatten the results: ['@®', ' &'
& 7 [-) | * J -] and [. |,'&|]and [. f|‘|&|]
—_ — are concatenated. y
L N N ..

/ const flatMappedArr = arr.flatMap(fruit = [fruit, '4']);

OUTPUT (New Array) QUTPUT (Original Array)

arr

'€, ['A', '@']] 4

SEARCHING AND FINDING

e find() (Non-Mutating) Qe
e findIndex() (Non-Mutating) Q<2

e index0f() (Non-Mutating)
e lastIndex0f() (Non-Mutating)

e includes() (Non-Mutating)

e at() (Non-Mutating)

1

N

el

1

e

v

e

=

Array.prototype.find() (Non-Mutating)

Returns the value of the first element in the array that satisfies the provided testing function.
Here, we search for the banana.

s

. ! -

lNPUT ARRAY (arr) | Scans the array.
P - S When it finds an element

P S g0 1 ‘ where fruit === "' . 'is
L [¥ * ’ -] true (the second element), it

— . — e returns that element. y
oo s o®
/ const foundFruit = arr.find(fruit = fruit == '");

OUTPUT (Return Value)

OUTPUT (Original Array)

arr

['@', ['A’', '@']]

Array.prototype.findindex() (Non-Mutating)

Returns the index of the first element in the array that satisfies the provided testing function.
Here, we find the index of the banana, which is 1.

INPUT ARRAY (arr)

Scans the array.

~ = — When it finds an element
‘g ! R ! N\ where fruit === ' . 'is
| - * , @] true (the second element), it
: returns its index (1).
00
/ const foundIndex = arr.findIndex(fruit => fruit = 'R");

OUTPUT (Return Value) Bl OUTPUT (Original Array)

arr

('@, ['R', '@']] 4+

Array.prototype.indexOf() (Non-Mutating)

Returns the first index at which a given element can be found in the array.
Here, we find the index of the orange, which is 2.

INPUT ARRAY (a") Scans the array for the
= : {, firstfoccurrence of '@’
PR Y > It finds it at the third
| 2 * , @] | ' element and returns its
* index (2).
o000 ..

/ const foundIndex = arr.index0f('@');

N,
o

OUTPUT (Return Value) | OUTPUT (Original Array)

2

arr

('@, ['', '@']] +

Array.prototype.lastindex Of() (Non-Mutating)

Returns the last index at which a given element can be found in the array.
To demonstrate, we've added a second apple to the array. The last index of the apple is 2.

INPUT ARRAY (a") Scans the array from the
_ ‘, — end for the last occurrence
'@ ')Q- '$®'] of 'e'. It finds it at the third
g < \\ element (index 2) and
<& returns its index.
) v >
o000 ..

const lastIndex = arr.lastIndex0f ('@ "');
'OUTPUT (Original Array)
arr

('@, ['h', '@']]

~ OUTPUT (Return Value)

Array.prototype.includes() (Non-Mutating)

Determines whether an array includes a certain value among its entries, returning a
boolean true or false. Here, we check if the array includes a banana, which is true.

INPUT ARRAY (arr
() Checks if the value

| [.,‘ ' .*.’ .“”.] J“\\\ exists within the array. It

does, so it returns true.
o®

p—

const hasBanana = arr. includes(' R');

"

" OUTPUT (Original Array)

_OUTPUT (Return Value)
arr

('@, ['h' '@']] 4+

Array.prototype.at() (Non-Mutating)

Takes an integer value and returns the item at that index, allowing for positive and negative integers.
Negative integers count back from the last item in the array. Here, we get the last element.

INPUT ARRAY (arr)
M Uses negative index -1 to
[u"’ '*-, -‘.”'] J|'\\ get the last element from

the array, which is “&".

-

'@, ['h', '@']] 4

SLICING AND JOINING
e slice() (Non-Mutating) ;%ﬂg

e concat() (Non-Mutating)

e join() (Non-Mutating) 36>

Array.prototype.slice() (Non-Mutating)

Returns a shallow copy of a portion of an array into a new array object selected from
start to end (end not included). The original array will not be modified.

| INPUT ARRAY (arr)
L. dCop1ie(s ele)ments fgom
P AU NP LY = index 1 (* -) up to, but not
L_‘ ['R, '@ A J \ including, index 3 (@)
e e : "

f const slicedArr = arr.slice(1, 3);

_OUTPUT (Original Array)
arr

['*" '.'] [.'—'1 '*'s '.Ia l‘%""“.I]J

Array.prototype.concat() (Non-Mutating)

Used to merge two or more arrays. This method does not change the existing arrays,
but instead returns a new array.

INPUT ARRAY 1 (arr1 " INPUT ARRAY 2 (arr2) -
™ Merges tf(]je elenzle_nts of
u’- 01 arrlandarr2intoa
! L _[é 2]_ _J\\ single, new array.
h 4 f—
° [X

const mergedArr = arrl.concat(arr2);

¥\

OUTPUT (Original Array 1) (i OUTPUT (Original Array 2)

 OUTRUT (New Aray)

!

Array.prototype.join() (Non-Mutating)

Creates and returns a new string by concatenating all of the elements in an array,

INPUT ARRAY (arr) -

(6 R, @]

\

separated by commas or a specified separator string.

'~ "as the separator.

s

| N
A
»

7

_ . o008

const joinedStr = arr.join(' - ');

Joins the array elements
into a single string, using

£ D , yor col : Y
MSIITDIIT ID AR v Vialion)
OUTPUT (Return Value)

f

-A- @

arr

'@, k'@

ﬁ'-} ' 1w Jon * T & by s — Y
'OUTPUT (Original Array)

™

> 2

ORDERING

e sort() (Mutating) [ll][],%
e reverse() (Mutating)]

Array.prototype.sort() (Mutating)

Sorts the elements of an array in place and returns the sorted array. The default sort order is ascending,
built upon converting the elements into strings, then comparing their sequences of UTF-16 code units values.

INPUT ARRAY (arr) g~
- Sorts the array elements in
[..'.’ | o 0 .*.] place alphabetically. The

order becomes Apple,

= Banana, Orange
P — \ 4
o0a

const sortedArr = arr.sort();

\—

'OUTPUT (Mutated Array)

Array.prototype.reverse() (Mutating)

Reverses an array in place. The first array element becomes the last,
and the last array element becomes the first.

INPUT ARRAY (arr)
Reverses ge order of elements
k1 th) 18R in place. ‘@’ moves to the end,
[’)“ ’ ;.] ‘©' moves to the beginning,

S— and * . " stays in the middle.
\5 ooa
Jreverse();

" OUTPUT (Return Value) OUTPUT (Mutated Array)

arr arr

'@ 'R, '] [o, 'R, ']

TESTING CONDITIONS

e every() (Non-Mutating) we=

e some() (Non-Mutating) o

Array.prototype.every() (Non-Mutating)

Tests whether all elements in the array pass the test implemented by the provided function.
Here, we check if every element is a string, which is true.

INPUT ARRAY (arr)

Checks if *all* elements are strings.
It iterates: ‘@’ is a string (true),

[u"' 'A', '."] * . "is astring (true),

‘&' is a string (true).

Since all are true, it returns true.
r 2 e N\
N N N

const allStrings = arr.every(item => typeof item == 'string’);

\

Array.prototype.some() (Non-Mutating)

Tests whether at least one element in the array passes the test implemented by the provided function.
Here, we check if there is an apple in the array, which is true.

N

INPUT ARRAY (arr)
' Checks if at least one element is ‘@’.
Py . It finds ‘@’ at the first index.
[I ' ' |*) : |.|] 9

Since at least one is true,

it returns true.
(- 4
\, L A N |

const hasApple = arr.some(fruit = fruit = '&");

\

_OUTPUT (Return Value)

UTILITY & STATIC METHODS

e fill() (Mutating) &
e copyWithin() (Mutating)

e Array.isArray() (Static) (%
e Array.from() (Static) E-@
e Array.of() (Static) =&

Array.prototype.fill() (Mutating)

Changes all elements in an array to a static value, from a start index (default 0) to an end index
(default array.length). Here, we fill the array with grapes from index 1 onwards.

INPUT ARRAY (arr)
[léii 'Al, "" "']

B Fills the array with '&@ ' starting
from index 1 up to the end of the

array. The elements at index 1 (' N,
),and 3 (' ') are replaced.

-

const filledArr = arr.fill('s®', 1);

OUTPUT (Mutated Array)

OUTPUT (Return Value) / \’
'@,

arr

(@', ']’ '],

["', 'éa‘, '.S'%', '.s:":\']

Array.prototype.copyWithin() (Mutating)

Shallow copies part of an array to another location in the same array and returns it without modifying its length.
Here, we copy the elements from index 3 to the end ("%, ‘@’) to the start of the array (index 0).

INPUT ARRAY (arr) .
: ' Copies elements from index 3 (‘4&’)
£) igh 1fm 1gR to the end (“)') and pastes
[6,'2,'®,'42,'@®] them starting at index 0,

‘ overwriting '@’ and * - °
r « 4
oena

arr.copyWithin(0, 3);

OUTPUT (Return Value)
[%,'®,'® %, '@

OUTPUT (Mutated Array)

arr

a6 6. %, @

Array.isArray() (Static)

Returns true if the passed value is an Array; otherwise false.
This is a static method, so it’s called on the Array constructor itself, not on an array instance.

Checks If the input Checks if the input
'@, 9'] is an array. 'Hello World' is an array.
It is, S0 it returns true. It is not, so it returns false.

Array.from() (Static)

Creates a new, shallow-copied Array instance from
an array-like or iterable object. Here, we create an array from a string.

INPUT (Iterable Object)

——

Takes the iterable string

‘hello’ and creates a new
array, with each character
as a separate element.

£

§

const newArr = Array.from('hello");

OUTPUT (New Array)

Array.of() (Static)

Creates a new Array instance using the variable
number of arguments provided as elements.

INPUT (Arguments) B Takes the provided arguments
: ' : (a variable number) and creates
1, 'apple', true, null, {id: 1} a new array where each
argument becomes an element.
ewe Q‘

const newArr = Array.of(l, 'apple', true, null, {id: 1});

~ OUTPUT (New Array)

[1, 'apple', true, null,
{id: 1}]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

